Российские физики научили осцилляторную нейросеть распознавать образы

Физики из Петрозаводского государственного университета предложили новый тип осцилляторной нейронной сети и научили ее распознавать простейшие образы. Предположительно, такие сети с регулируемым синхронным состоянием отдельных нейронов имеют динамику, подобную нейронам в живом мозге. Исследование, выполненное при поддержке Российского научного фонда (РНФ), опубликовано в журнале Electronics.

Перед учеными кафедры электроники и электроэнергетики ПетрГУ была поставлена актуальная цель по распознаванию образов на основе сетей из связанных осцилляторов, реализуемых на структурах из двуокиси ванадия. Физики разработали методику регистрации синхронизации, обладающую высокой чувствительностью и избирательностью. Применяя ее на практике, возможно создать сеть, способную распознавать образы подобно тому, как это делают биологические нейронные системы.

В этой работе в качестве входных образов использовали таблицы размерности 3×3, передаваемые в сеть за счет изменения питающих токов, которые, в свою очередь, меняли частоты колебаний осцилляторов. В результате динамика связанной сети реагировала на каждый полученный образ. Идея заключалась в том, что, подобрав ключевые параметры сети, можно обучить систему синхронизироваться только для определенного входного образа, а значит – распознавать его.

В качестве регистрируемого сигнала выбрали состояние синхронизации выходного нейрона-осциллятора относительно ритма основного нейрона-осциллятора. Авторы показали, что синхронизация может наблюдаться не только на основных частотах, но и на их кратных долях (субгармониках). Увеличение числа синхронных состояний за счет субгармоник называется эффектом синхронизации высокого порядка. Имея одновременно несколько состояний синхронизации, нейрон становится мультиуровневым. Так, осцилляторная сеть из малого количества нейронов может выполнять сложные операции, к примеру, по распознаванию речи, изображений и видео, а также способна к решению задач прогнозирования, оптимизации и управления.

Используя это свойство, исследователям удалось настроить сеть так, что разные входные образы вызывали различную синхронизацию осцилляторной сети. Оказалось, что сеть способна распознавать одновременно до 14-ти фигур (размерности 3×3) из 102 возможных вариантов, имея при этом на выходе всего один осциллятор.

«В перспективе на основе этих сетей могут быть созданы компактные нейросетевые чипы с наноразмерными осцилляторами. Особенность разрабатываемой нами нейросетевой технологии заключается в принципиально новой системе обработки информации. Она основана на эффекте синхронизации высокого порядка импульсных сигналов, позволяющем реализовывать мультиуровневые нейроны с высокой степенью функциональности. Преимуществом подобных осцилляторных нейронных сетей является перспектива их создания с использованием самых различных физических осцилляторов, в том числе магнитной и электрической природы. При этом обученная сеть уже не нуждается в компьютерных вычислениях, и работает самостоятельно, как отдельный нейронный организм», – рассказывает руководитель гранта, доцент Петрозаводского государственного университета Андрей Величко.

Источник

Каким будет музыкальный рынок через 10 лет